Serie di potenze

Riccarda Rossi

Università di Brescia

Analisi II

Richiami di teoria

Data $\{a_n\} \subset \mathbb{R}$, la *serie di potenze* di centro $x_0 \in \mathbb{R}$ è

$$\sum_{n=0}^{+\infty} a_n (x-x_0)^n.$$

Alla serie si associa il raggio di convergenza R:

$$\underline{\operatorname{se}} \ \exists \lim_{n \to +\infty} \sqrt[n]{|a_n|} = I$$

$$\underline{\operatorname{allora}} \ R = \left\{ \begin{array}{l} +\infty & \operatorname{se} \ I = 0, \\ \\ \frac{1}{I} & \operatorname{se} \ 0 < I < +\infty, \\ \\ 0 & \operatorname{se} \ I = +\infty. \end{array} \right.$$

cioè R è il "reciproco generalizzato" di I.

$$\sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

- converge puntualmente & assolutamente su $(x_0 R, x_0 + R)$
- ② <u>non</u> converge in $\mathbb{R} \setminus [x_0 R, x_0 + R]$ (cioè non converge per $|x x_0| > R$)
- **1** può (oppure no) convergere in $x = x_0 R$ e $x = x_0 + R$
- **3** converge <u>totalmente</u> e dunque <u>uniformemente</u> su $[x_0 r, x_0 + r]$ per ogni 0 < r < R
- teor. Abel: se converge in $x = x_0 + R$, allora converge uniformem. in $[x_0, x_0 + R]$, e idem per $x = x_0 R$

Osservazione. Se $a_n \geq 0$

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = I \quad \Rightarrow \quad \lim_{n \to +\infty} \sqrt[n]{a_n} = I$$

⇒ equivalente calcolare il raggio di convergenza con criterio rapporto asintotico, quindi

$$I = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|}$$

$$\Downarrow$$

R "reciproco generalizzato" di I